НОРМАЛЬНАЯ И КАСАТЕЛЬНАЯ ЖЕСТКОСТЬ ПЛОСКОГО СТЫКА ФРАКТАЛЬНЫХ ПОВЕРХНОСТЕЙ

М.А. ИЗМЕРОВ, канд. техн. наук, В.П. ТИХОМИРОВ, д-р техн. наук

Брянский государственный технический университет 241035, Брянск, б-р 50 лет Октября, 7, e-mail: m.izmerov@yandex.ru

© Измеров М.А., Тихомиров В.П., 2022

В работе предложены фрактальная модель описания шероховатости и модель контактного взаимодействия для инженерных поверхностей. Получены результаты, характеризующие нормальную и тангенциальную жесткости плоского стыка. Проведено сравнение с литературными экспериментальными данными других исследований.

Ключевые слова: шероховатость, параметры шероховатости, жесткость, геометрическое моделирование, математические модели.

DOI: 10.46573/2658-5030-2022-2-21-29

введение

Поведение многих технических систем зависит от качества сопряженных поверхностей, выполняющих те или иные функции. Например, демпфирующая способность и вибрационная активность стыка соединений деталей машин в значительной мере определяются микрогеометрией сопряженных поверхностей. Авторами настоящей статьи использована фрактальная модель поверхности, которая наиболее полно описывает особенности структуры инженерных поверхностей и позволяет обосновать применение множества параметров шероховатости в рамках детерминированных и статистических моделей поверхности. Для поверхностей с малой площадью в ряде случаев волнистостью можно пренебречь.

Отличительной особенностью предлагаемого подхода является поведение деформируемых неровностей. Учитывая особенности фрактальной структуры неровностей, полагаем, что в начале их сжатия гладким штампом происходит пластическое деформирование субмикрошероховатости верхней части выступов вследствие их малых радиусов. При увеличении сжимающей нагрузки и площади контакта формируются условия для реализации упругого состояния выступа. В полученных в работе зависимостях учитывается отличие размерного распределения площадей среза выступов от распределения площадей реальных пятен контакта, находящихся в упругом состоянии.

Цель работы: провести оценку нормальной и касательной жесткости плоского стыка инженерных поверхностей под нагрузкой на уровне шероховатости при моделировании контакта 3D-поверхностей на основе фрактальных представлений о структуре поверхности.

РАДИУС ЗАКРУГЛЕНИЯ ВЕРХНЕЙ ЧАСТИ ВЫСТУПА

Полагаем, что верхняя часть микровыступа неровности шероховатой поверхности в микромиллиметровом диапазоне измерения представляет собой сферу.

Используя уравнение Вейерштрасса – Мандельброта [1, 2] для фрактальных объектов, найдем высоту выступа, имеющего основание *l*:

$$h = G^{D-1}l^{2-D}, \quad 1 < D < 2, \tag{1}$$

где *G* – фрактальный параметр шероховатости; *D* – фрактальная размерность профиля поверхности. Рассмотрим деформацию выступа гладким штампом (рис. 1).

Рис. 1. Соотношение площадей среза микровыступа *a*' и фактической площади контакта *a* на разных уровнях деформации

Радиус верхней части выступа определим из выражения

$$R = \frac{(2r\prime)^2}{8\delta}.$$
 (2)

Площадь основания недеформированной сферы (срез выступа на уровне δ):

$$a' = \pi(r')^2 = 2\pi r^2 = 2a.$$

Тогда можно записать, что

$$(2r')^2 = 4a'/\pi.$$
 (3)

Учитывая особенности структуры фрактальной кривой, запишем

$$\delta = G^{D-1} (2r')^{2-D}. \tag{4}$$

Подставив выражения (3) и (4) в уравнение (2), получим

$$R = \frac{a r^{(\frac{D}{2})}}{\pi^{D/2} 2^{(3-D/2)} G^{D-1}}.$$
(5)

Предлагаемый подход качественно не противоречит модели Маджумдара – Бхушана, и радиус скругления верхней части выступа неровности, в отличие от модели Гринвуда – Вильямсона [3], не является постоянным.

КРИТИЧЕСКАЯ ПЛОЩАДЬ ПЯТНА КОНТАКТА И КРИТЕРИЙ ПЕРЕХОДА МЕЖДУ ЕГО СОСТОЯНИЯМИ

Маджумдар и Бхушан считают, что «меньшие пятна контакта имеют меньшие радиусы закругления микронеровностей, поэтому более вероятно, что микровыступы подвергнутся пластической деформации» [4, 5]. С целью упрощения задачи полагаем

только два состояния контакта – упругое и пластическое. Соотношение (по Герцу) между нагрузкой *F* и площадью пятна контакта *a* имеет вид:

для упругого контакта с учетом того, что a' = 2a:

$$F_e^0 = \frac{4}{3} E R^{\frac{1}{2}} \delta^{\frac{3}{2}} = \frac{4Ea^{\frac{3}{2}}}{3\pi^{\frac{3}{2}}R} =; \quad \frac{1}{E} = \frac{1-\mu_1^2}{E_1} + \frac{1-\mu_2^2}{E_2},$$

где *E*₁, *E*₂, *µ*₁, *µ*₂ – коэффициенты Пуассона и модули упругости сопряженных поверхностей;

для пластического контакта:

$$F_p^{\ 0} = Ha'; \quad H = min\{H_1, H_2\},$$

где *H* – твердость.

Подставив в соотношение для упругого контакта радиус, выражаемый уравнением (5), получим

$$F_e^0 = \frac{E}{3} \frac{a^{\prime(3-D)/2} 2^{(7-D/2)}}{\pi^{(3-D)/2}} G^{(D-1)}.$$

Тогда критерий перехода определяется на основе равенства $F_e^{\ 0} = F_p^{\ 0}$. Если приравнять нагрузки в упругом и пластическом состояниях контакта, то после преобразования можно выразить критическую величину площади пятна контакта:

$$a_{c1} = \left(\frac{E}{H} \frac{2^{(7-D/2)}}{3\pi^{\left(\frac{3-D}{2}\right)}}\right)^{\frac{2}{(D-1)}} G^2.$$
(6)

КОНТАКТНАЯ ЖЕСТКОСТЬ ВЫСТУПА

Нормальная контактная жесткость выступа в упругом состоянии определяется выражением

$$k_{Ne} = \frac{dF_e^0}{d\delta}.$$

Выразим нагрузку на выступ, учитывая выражение (2) и соотношение $a' = 2\pi R\delta$, следующим образом:

$$F_e^0 = \frac{4E}{3} \left[\frac{(2\pi)^{D/2}}{8G^{(D-1)}} \right]^{\frac{1}{2-D}} \delta^{\left(\frac{3-D}{2-D}\right)}.$$

Тогда

$$k_{Ne} = \frac{4E}{3} \left(\frac{3-D}{2-D}\right) \left[\frac{(2\pi)^{D/2}}{8G^{(D-1)}}\right]^{\frac{1}{2-D}} \delta^{\left(\frac{1}{2-D}\right)}.$$

С учетом выражения (4) и того, что $a' = \frac{\pi}{4} (2r')^2$, можно записать

$$k_{Ne} = \frac{8}{3\sqrt{\pi}} E\left(\frac{3-D}{2-D}\right) \left[\frac{(2\pi)^{D/2}}{8}\right]^{\frac{1}{2-D}} a^{\prime(1/2)}.$$
(7)

Известно, что между нормальной и тангенциальной контактной жесткостью имеется функциональная зависимость [5, 7, 8], связанная с коэффициентом Пуассона μ , в виде

$$\frac{k_T}{k_N} = \chi \emptyset(\mu),\tag{8}$$

где $0,5 \le \chi \le 2,0$, а $\emptyset(\mu) = (1-\mu)/(2-\mu)$.

МНОЖЕСТВЕННЫЙ КОНТАКТ

Размерное распределение площадей среза выступов определяется по формуле, приведенной в [2, 6]:

$$n_t(a') = \frac{D}{2} a'_L^{(D/2)} a'^{\left[-\binom{D+2}{2}\right]}$$

где a' — площадь среза недеформированной неровности (для упругого контакта a' = 2a, для пластического a' = a); a_L — максимальная площадь среза неровности.

Количество площадей среза, лежащих между a' и a' + da', равно n(a')da. Распределение площадей фактических пятен упругого контакта, отличающихся от площадей среза, примем в соответствии с [9] в виде

$$n(a') = \frac{D}{2} a'_{L}^{(D/2)} \psi^{-(1-D/2)} a'^{\left[-\left(\frac{D+2}{2}\right)\right]},$$
(9)

где $\psi = 6,62D^{-0.84}$.

Нормальная контактная жесткость оценивается выражением

$$K_{Ne} = \int_{a_{c1}}^{a'_{L}} k_{Ne} n(a') da' = \int_{a_{c}}^{a'_{L}} \frac{4}{3\sqrt{2\pi}} E\left(\frac{3-D}{2-D}\right) a'^{\left(\frac{1}{2}\right)} \frac{D}{2} a'^{\left(\frac{D}{2}\right)}_{L} a'^{\left(-\left(\frac{D+2}{2}\right)\right)}_{L} da' = = \frac{8DE}{3\sqrt{2\pi}} \frac{(3-D)\left(a'^{\frac{1}{2}}_{L} - a^{\frac{(1-D)}{2}}_{c1}a'^{\frac{D}{2}}_{L}\right)}{(2-D)(1-D)\psi^{\left(1-\frac{D}{2}\right)}}.$$
(10)

С учетом соотношения между касательной и нормальной жесткостью, приведенной в работе [7], запишем:

$$K_T = \frac{\pi}{2} \frac{(1-\mu)}{(2-\mu)} K_N.$$

Представим зависимость нормальной нагрузки на плоский стык от площади максимального пятна контакта. Если максимальная площадь пятна не превышает $a \le a_c$, то

$$F_p = \int_0^{a_{c1}} Ha' \frac{D}{2} a' \frac{D}{c_1} a' \left[-\left(\frac{D+2}{2}\right) \right] da' = \frac{HDa_{c1}}{(2-D)}, \qquad 0 < a \le a_c.$$

Вестник Тверского государственного технического университета. Серия «Технические науки». № 2 (14), 2022

Нагрузка, воспринимаемая упругодеформированными выступами шероховатой поверхности, определяется соотношением

$$F_{e} = \int_{a_{c1}}^{a'_{L}} \frac{E}{3} \frac{a^{\frac{(3-D)}{2}} 2^{\left(7-\frac{D}{2}\right)}}{\pi^{\frac{(3-D)}{2}}} G^{(D-1)} \frac{D}{2\psi^{\left(1-\frac{D}{2}\right)}} a^{\frac{D}{2}} a^{\frac{D}{2}} a^{\frac{D}{2}} a^{\frac{D}{2}} a^{\frac{D}{2}} = \\ = \frac{E}{3} \frac{2^{\left(7-\frac{D}{2}\right)}}{\pi^{\frac{(3-D)}{2}}} G^{(D-1)} \frac{D}{2\psi^{\left(1-\frac{D}{2}\right)}} a^{\frac{D}{2}} a^{\frac{D}{2}} \int_{a_{c}}^{a'_{L}} a^{\frac{(5-2D)}{2}} da^{\frac{D}{2}} = \\ = \frac{E}{3} \frac{a^{\frac{(3-D)}{2}} 2^{\left(6-\frac{D}{2}\right)}}{\pi^{\frac{(3-D)}{2}} (3-2D)} G^{(D-1)} \frac{D}{2\psi^{\left(1-\frac{D}{2}\right)}} \left(a^{\frac{(3-D)}{2}} - a^{\frac{D}{2}} a^{\frac{(3-2D)}{2}} a^{\frac{(3-2D)}{2}}\right), \\ D \neq 1,5.$$
(11)

Приведенная формула справедлива при $a_{c1} \le a \le a'_L$, D < 1,5. Если фрактальная размерность D > 1,5, то, следуя [10]:

$$F_e = \frac{2E}{\pi^{3/4}\psi^{1/4}}\sqrt{G}(a_L')^{3/4}\ln\left[\frac{a_L'}{a_{c1}}\right].$$

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Расчеты были выполнены для шлифованных поверхностей со следующими параметрами: D = 1,531; $G = 6,768 \cdot 10^{-6}$ мм; $H = 3\,000$ МПа; $E = 10^{5}$ МПа. Используя формулу (7), имеем $a_{c1} = 1,552 \cdot 10^{-6}$ мм². Тогда $F_p = 0,015$ Н. На рис. 2 представлена зависимость контактной жесткости от номинального давления. Эта зависимость носит линейный характер, что согласуется с данными, приведенными в статье [11].

Рис. 2. Зависимость нормальной контактной жесткости от номинального давления

Численная оценка нормальной нагрузки, приложенной к плоскому стыку, показала малую долю вклада пластически деформированных выступов. Численное значение контактной жесткости при давлении $p_a = 1,06$ МПа составило $K_N = 1,461 \cdot 10^4$ Н/мм. С учетом соотношения (8) можно сделать вывод, что

тангенциальная контактная жесткость также носит линейный характер в зависимости от номинального давления.

Используя приведенные в настоящей работе зависимости, найдем аналитическую зависимость между сближением (мкм) и нагрузкой (Н) на фрактальную поверхность, которая характеризуется выражением

$$\delta = 0.29 F_e^{0.23} \,. \tag{12}$$

Связь между площадью максимального пятна контакта и сближением

$$\delta = \left(\frac{a'_L}{\pi}\right)^{1-D/2} 2^{\frac{3-D}{2}} G^{D-1}.$$

Подобная зависимость, основанная на экспериментальных данных для шлифованной поверхности, имеющей высоту сглаживания $R_p = 2,4$ мкм и радиус верхней части выступов 60 мкм, приведена в статье [12]:

$$\delta = 0,20 F_{e}^{0.29}$$

Сравнение этих зависимостей показывает их близкое соответствие, что позволяет оценить корректность предлагаемого в настоящей работе подхода. На рис. 3 представлена зависимость сближения от номинального давления при различных размерах площадок номинального контакта.

Рис. 3. Зависимость сближения от номинального давления: 1 – номинальная площадь контакта $A_a = 0,64 \text{ мm}^2$; 2 – 100 мм²; 3 – 300 мм²

Предложенная модель контактного взаимодействия является корректной при условии, что по мере роста сжимающей нагрузки имеет место пластическая деформация неровностей, которая с ростом нагрузки переходит в упругую, а затем в пластическую. Критерий второго перехода найдем из выражения [13]:

$$a'_{c2} = 2,4\pi \left[2^{(2-D)} \left(\frac{E}{H}\right)^2\right]^{\frac{1}{D-1}} G^2.$$

Для представленного выше примера критическая площадь выступа $a'_{c2} = 3,468 \cdot 10^{-4} \text{ мм}^2 (a'_{c2} = 223 a_{c1}).$

Номинальное давление, при котором предлагаемая модель является корректной (для данных фрактальных параметров поверхности), не должно превышать $p_a \leq 3,22$ МПа. При $a'_L \geq a'_{c2}$ нагрузка, воспринимаемая пластически деформированными выступами (пластически насыщенный (по Н.М. Михину) контакт), определяется выражением

$$F_{p} = \int_{a_{c2}'}^{a_{L}'} Ha' \frac{D}{2} a'_{L}^{\left(\frac{D}{2}\right)} a'^{\left[-\left(\frac{D+2}{2}\right)\right]} da' = \frac{HD}{(2-D)} \left(a'_{L} - a'_{L}^{D/2} a_{c2}^{(1-D/2)}\right).$$

При этом фактическая площадь контакта

$$A_r = F_p/H.$$

выводы

Основные результаты работы можно представить в виде пунктов:

1. Величина нормальных деформаций контакта (сближение контактирующих поверхностей) нелинейно зависит от величины нормальной (сжимающей) нагрузки в диапазоне рассматриваемых значений (см. формулу (12)).

2. Нормальная контактная жесткость не является постоянной величиной и зависит от структуры сопряженных поверхностей и величины сжимающей силы (см. рис. 2). Тангенциальная жесткость контакта зависит от нормальной жесткости и коэффициента Пуассона.

3. Отношение величин тангенциальной и нормальной контактной жесткости стальных плоских стыков шероховатых поверхностей не зависит от нагрузки и равно 0,647 в рамках приведенной методики расчета. Экспериментальные данные (по В.В. Измайлову) показывают, что это отношение для плоского стыка составляет примерно 0,625...0,909.

4. На величины нормальной и тангенциальной жесткостей плоских стыков шероховатых поверхностей влияет фрактальная форма выступов шероховатости. Обеспечение высоких значений нормальной контактной жесткости способствует, в частности, повышению долговечности болтов фланцевых соединений.

Предложенный подход дает возможность обоснованно выбрать технологический способ обработки контактирующих поверхностей, обеспечивающий требуемые функциональные характеристики сопряжения.

ЛИТЕРАТУРА

1. Majumdar A., Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces // *Journal of Tribology*. 1990. V. 112 (2). P. 205–216.

2. Majumdar A., Bhushan B. Fractal model of elastic-plastic contact between rough surfaces // *Journal of Tribology*. 1991. V. 113(1). P. 1–11.

3. Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces // Proceedings of the royal society of London. Series A. Mathematical and physical sciences. 1966. V. 295. № 1442. P. 300–319.

4. Mindlin R.D. Compliance of elastic bodies in contact // Journal of Applied Mechanics. 1949. V. 71. P. 259–268.

5. Raffa M.L., Lebon F., Vairo G. Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model // *International Journal of solids and structures*. 2016. V. 87. P. 245–253.

6. Xu K., Yuan Y., Chen J. The effects of size distribution functions on contact between fractal rough surfaces // *AIP Advances*. 2018. V. 8. № 7. P. 075317.

7. Sherif H.A., Kossa S.S. Relationship between normal and tangential contact stiffness of nominally flat surfaces // *Wear*. 1991. V. 151. P. 49–62.

8. Yoshioka N., Scholz C.H. Elastic properties of contacting surfaces under normal and shear loads: 1. Theory // Journal of Geophysical Research: Solid Earth. 1989. V. 94. № B12. P. 17681–17690.

9. Filippi S., Akay A., Gola M.M. Measurement of tangential contact hysteresis during microslip // Journal of Tribology. 2004. V. 126. № 3. P. 482–489.

10. Zhao Y. Yang C., Cai L., Shi W., Hong Y. Stiffness and damping model of bolted joints with uneven surface contact pressure distribution // *Strojniski Vestnik. Journal of Mechanical Engineering*. 2016. V. 62. № 11. P. 665–677.

11. Gong Y., Shen J., Liu W., Chen L. Fractal characteristics of mechanical interface contact parameters // *MATEC Web of Conferences. – EDP Sciences.* 2018. V. 175. P. 03009.

12. Измайлов В.В., Левыкин Д.А. Нормальная и касательная жесткости плоского стыка шероховатых поверхностей // Механика и физика процессов на поверхности и в контакте твердых тел, деталей технологического и энергетического оборудования. 2012. № 5. С. 4–11.

13. Михин Н.М. Внешнее трение твердых тел. М.: Наука. 1977. 221 с.

Для цитирования: Измеров М.А., Тихомиров В.П. Нормальная и касательная жесткость плоского стыка фрактальных поверхностей // Вестник Тверского государственного технического университета. Серия «Технические науки». 2022. № 2 (14). С. 21–29.

NORMAL AND TANGENTIAL STIFFNESS OF A FLAT JOINT OF FRACTAL SURFACES

M.A. IZMEROV, Cand. Sc., V.P. TIKHOMIROV, Dr Sc.

Bryansk State Technical University, 7, 50 years of October Blvd., 241035, Bryansk, Russian Federation, e-mail: m.izmerov@yandex.ru

In paper a fractal roughness description model and a contact interaction model for engineering surfaces are proposed. The results describing the normal and tangential stiffness of a flat joint are obtained. A comparison with the literature experimental data of other studies is made.

Keywords: roughness, roughness parameters, stiffness, geometric modeling, mathematical models.

REFERENCES

1. Majumdar A., Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. *Journal of Tribology*. 1990. V. 112 (2), pp. 205–216.

2. Majumdar A., Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. *Journal of Tribology*. 1991. V. 113 (1), pp. 1–11.

3. Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces. *Proceedings of the royal society of London. Series A. Mathematical and physical sciences*. 1966. V. 295. No. 1442, pp. 300–319.

4. Mindlin R.D. Compliance of elastic bodies in contact. *Journal of Applied Mechanics*. 1949. V. 71, pp. 259–268.

5. Raffa M.L., Lebon F., Vairo G. Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model. *International Journal of solids and structures*. 2016. V. 87, pp. 245–253.

6. Xu K., Yuan Y., Chen J. The effects of size distribution functions on contact between fractal rough surfaces. *AIP Advances*. 2018. V. 8. No. 7. P. 075317.

7. Sherif H.A., Kossa S.S. Relationship between normal and tangential contact stiffness of nominally flat surfaces. *Wear*. 1991. V. 151, pp. 49–62.

8. Yoshioka N., Scholz C.H. Elastic properties of contacting surfaces under normal and shear loads: 1. Theory. *Journal of Geophysical Research: Solid Earth.* 1989. V. 94. No. B12, pp. 17681–17690.

9. Filippi S., Akay A., Gola M.M. Measurement of tangential contact hysteresis during microslip. *Journal of Tribology*. 2004. V. 126. No. 3, pp. 482–489.

10. Zhao Y., Yang C., Cai L., Shi W., Hong Y. Stiffness and damping model of bolted joints with uneven surface contact pressure distribution. *Strojniski Vestnik. Journal of Mechanical Engineering*. 2016. V. 62. No. 11, pp. 665–677.

11. Gong Y., Shen J., Liu W., Chen L. Fractal characteristics of mechanical interface contact parameters. *MATEC Web of Conferences. – EDP Sciences.* 2018. V. 175. P. 03009.

12. Izmailov V.V., Levykin D.A. Normal and tangential rigidity of a flat joint of rough surfaces. *Mekhanika i fizika protsessov na poverkhnosti i v kontakte tverdykh tel, detaley tekhnologicheskogo i energeticheskogo oborudovaniya.* 2012. No. 5, pp. 4–11.

13. Mikhin N.M. Vneshneye treniye tverdykh tel [External friction of solids]. Moscow: Nauka. 1977. 221 p.

Поступила в редакцию/received: 17.01.2022; после рецензирования/revised: 27.01.2022; принята/accepted: 04.02.2022