
Вестник Тверского государственного технического университета. 

Серия «Технические науки». № 1 (29), 2026 

86 

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 

И ТЕЛЕКОММУНИКАЦИИ 
 

 

 

УДК 517.938      DOI: 10.46573/2658-5030-2026-1-86-93 

 

ОБ ОДНОМ НОВОМ СВОЙСТВЕ РЕКУРРЕНТНЫХ ДВИЖЕНИЙ 

ДИНАМИЧЕСКИХ СИСТЕМ НА КОМПАКТНЫХ МНОГООБРАЗИЯХ 

 

С.М. Дзюба, д-р физ.-мат. наук, И.И. Емельянова, магистр 

 

Тверской государственный технический университет, 

170026, Тверь, наб. Аф. Никитина, 22, e-mail: sdzyuba@mail.ru 

© Дзюба С.М., Емельянова И.И., 2025 

На основании определений минимального множества и рекуррентного движе-

ния, введенных Дж. Биркгофом в начале прошлого века, получено новое достаточное 

условие рекуррентности движений динамических систем на топологическом 

компактном многообразии V. Это условие дает достаточно полное представление о 

структуре рекуррентного движения как функции времени на V и, таким образом, 

органично дополняет классическое определение Биркгофа. Одно из основных значений 

данного результата состоит в том, что он приводит к новому методу приближенного 

построения рекуррентных движений. Предложенный метод без принципиальных 

изменений может быть применен к построению к построению асимптотических 

рекуррентных решений неавтономных систем обыкновенных дифференциальных 

уравнений. 

Ключевые слова: топологическое компактное многообразие, динамические 

системы, рекуррентные движения. 

 

ВВЕДЕНИЕ 
Как известно, даже классические задачи анализа замкнутых систем 

автоматического регулирования тесно связаны с задачами теории динамических систем 

(см., например, [1]), что особенно прослеживается в монографиях [2, 3]. Представлено 

мощное современное развитие этих результатов [4], и установлена их связь с 

проблемой моделирования турбулентного движения идеальной жидкости [5]. 

Заметим, что важная гипотеза, связанная с моделированием турбулентности [3], 

оказалась некорректной вследствие неверной трактовки расположения рекуррентных 

движений, что было показано в [6]. Коротко обсудим это. 

Пусть 𝛴 – компактное метрическое пространство с метрикой 𝑑 и 𝑅 – поле 

действительных чисел. Рассмотрим отображение 𝑓: 𝑅 × 𝛴 → 𝛴 и положим 

 

𝑓(𝑡, 𝑝) = 𝑔𝑡𝑝. 
 

При этом будем считать: 

(a1) отображение 𝑓 непрерывно по совокупности переменных 𝑡, 𝑝 на множестве 

𝑅 × 𝛴; 
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(a2) для всех 𝑝 ∈ 𝛴 

 

𝑔0𝑝 = 𝑝; 
 

(a3) для всех 𝑡, 𝜏 ∈ 𝑅 
 

𝑔𝑡+𝜏 = 𝑔𝑡𝑔𝜏. 
 

Тогда будем говорить, что группа преобразований 𝑔𝑡 – динамическая система,      

а для любого 𝑝 ∈ 𝛴 функция 𝑡 → 𝑓(𝑡, 𝑝) – движение (см. [7, с. 347]). 

Из всех движений особое значение имеет рекуррентное [8, с. 204]. Напомним, 

что движение 𝑓(𝑡, 𝑝) называется рекуррентным, если для каждого 𝜀 > 0 найдется такое 

𝑇𝜀 > 0, что для всех 𝜏 ∈ 𝑅 дуга 

 

𝐾𝜏,𝑇𝜀
= {𝑓(𝑡, 𝑝): 𝑡 ∈ [𝜏, 𝜏 + 𝑇𝜀]} 

траектории 

𝐾 = {𝑓(𝑡, 𝑝): 𝑡 ∈ 𝑅} 
 

этого движения аппроксимирует всю траекторию 𝐾 с точностью 𝜀 [7, с. 402]. При этом 

само понятие рекуррентного движения прямо связано с понятием минимального 

множества. 

В самом деле, в компактном пространстве 𝛴 замыкание траектории рекуррент-

ного движения представляет собой компактное минимальное множество [7, с. 404]. 

Напомним, что множество 𝑀 ⊂ 𝛴 называется минимальным, если оно непусто, 

замкнуто, инвариантно и не содержит ни одного собственного подмножества, 

обладающего тремя указанными выше свойствами [7, с. 400]. Напомним также, что 

любое движение 𝑓(𝑡, 𝑝), расположенное в компактном минимальном множестве 𝑀, 

рекуррентно  [7, с. 402]. 

Как известно, каждое компактное пространство движений 𝛴 содержит компакт-

ное минимальное множество 𝑀. Найдется такая вполне упорядоченная система 

компактных инвариантных множеств 

 

𝛴 ⊃ 𝑀1 ⊃ 𝑀2 ⊃ ⋯ ⊃ 𝑀𝜔 ⊃ 𝑀𝜔+1 ⊃ ⋯,                                            (1) 

 

занумерованных всеми порядковыми числами первого и второго классов, что 
 

                                    𝑀 = 𝑀1 ∩ 𝑀2 ∩ … ∩ 𝑀𝜔 ∩ 𝑀𝜔+1 ∩ … [7, с. 401]. 

 

Как ни покажется это странным, изначально и вплоть до самого последнего 

времени структура последовательности (1) изучалась в самом общем виде (см., 

например, [9, с. 1–4] ), что, говоря в целом, и послужило причиной ошибки в [3]. 

Детальное изучение данной структуры выявило ряд новых свойств движений системы 

𝑔𝑡 [10]. Это позволило в статье [11] существенным образом упростить устоявшееся 

представление о взаимоотношении движений на топологическом компактном 

многообразии 𝑉, фактически изложенное в [8, гл. VII] и с тех пор не менявшееся. 
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Основной целью настоящей работы является дальнейшее развитие результатов статей 

[6, 11], позволяющее выявить некоторое новое свойство рекуррентных движений на 𝑉. 

 

ДИНАМИЧЕСКИЕ СИСТЕМЫ НА МНОГООБРАЗИЯХ 

Пусть 𝑉 – топологическое компактное многообразие размерности 𝑛 и пусть на 𝑉 

задана полная однопараметрическая группа преобразований 𝑔𝑡. По определению 𝑔𝑡 

представляет собой динамическую систему, для которой установлены все базовые 

понятия и свойства общей теории динамических систем [8, гл. VII]. 

Зафиксируем произвольный атлас (𝛷𝑠, 𝜑𝑠)𝑠∈𝑆 многообразия 𝑉, где 𝛷𝑠 – 

некоторая открытая часть пространства 𝑅𝑛 и 𝜑𝑠 – гомеоморфизм 𝛷𝑠 на 𝑉𝑠 ⊂ 𝑉. При 

этом, поскольку 𝑉 компактно, будем считать, что число 𝑆 конечно. 

Следуя Биркгофу, будем называть любое движение 𝑓(𝑡, 𝑝) системы 𝑔𝑡, распо-

ложенное в компактном минимальном множестве 𝑀, рекуррентным. Кроме того, 

заметим, что Биркгоф фактически доказал следующее [8, c. 203]: для рекуррентности 

движения 𝑓(𝑡, 𝑝) на 𝑉 необходимо и достаточно, чтобы для каждого сколь угодно 

малого положительного числа 𝜀 нашлось такое 𝑇𝜀 > 0, что при всех 𝜏 ∈ 𝑅 и 𝜎 ∈ 𝑅 

существует такое 𝑡 ∈ [𝜎, 𝜎 + 𝑇𝜀], что ∥ 𝜑𝑠
−1(𝑓(𝜏, 𝑝)) − 𝜑𝑠

−1(𝑓(𝑡, 𝑝)) ∥< 𝜀 на одном из 

множеств 𝛷𝑠. Последнее, очевидно, полностью соответствует приведенному ранее 

современному определению рекуррентного движения. 

В дальнейшем при исследовании рекуррентных движений системы 𝑔𝑡 мы будем 

интерпретировать многообразие 𝑉 как полуметрическое пространство с отделимой 

структурой. 

Напомним, что топологическое пространство 𝛤 называется  полуметрическим, 

если топология в нем индуцирована направленным семейством полуметрик (𝑑𝑖)𝑖∈𝐼,              

где множество индексов 𝐼 может иметь произвольную мощность (см., например,            

[12, c. 456]). 

Напомним также, что функция 𝑑𝛾: 𝛤 × 𝛤 → называется  полуметрикой, если она 

удовлетворяет следующим условиям: 

(s1) для всех (𝑝, 𝑞) ∈ 𝛤 × 𝛤 

 

𝑑𝛾(𝑝, 𝑞) = 𝑑𝛾(𝑞, 𝑝); 

 

(s2) для всех 𝑝 ∈ 𝛤 
 

𝑑𝛾(𝑝, 𝑝) = 0, 
 

а случай 
 

𝑑𝛾(𝑝, 𝑞) = 0 

 

не исключается при 𝑞 ≠ 𝑝; 

(s3) для всех 𝑝 ∈ 𝛤, 𝑞 ∈ 𝛤 и 𝑟 ∈ 𝛤 выполнено неравенство треугольника 

 

𝑑𝛾(𝑝, 𝑞) ≤ 𝑑𝛾(𝑝, 𝑟) + 𝑑𝛾(𝑟, 𝑞). 
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И, наконец, напомним, что семейство полуметрик (𝑑𝑖)𝑖∈𝐼 называется направ-

ленным, если для любой конечной части 𝐽 ⊂ 𝐼 найдется такое 𝑘 ∈ 𝐼, что 𝑑𝑘 ≥ 𝑑𝑗 для 

всех 𝑗 ∈ 𝐽. Если же для каждой пары 𝑝 ≠ 𝑞 найдется такая полуметрика 𝑑𝛾, что 
 

𝑑𝛾(𝑝, 𝑞) > 0, 
 

то будем говорить, что пространство 𝛤 снабжено отделимой структурой [12, c. 456]. 

Заметим теперь, что многообразие 𝑉 полуметризуемо как топологическое 

компактное пространство [12, c. 458]. Полуметрики на 𝑉 мы определим следующим 

образом. 

Зафиксируем некоторую точку 𝑥 ∈ 𝑉, некоторую ее связную окрестность 𝐸 и 

зададим непрерывную функцию 𝛾: 𝑉 →, такую, что 𝛾(𝑝) > 0, если 𝑝 ∈ 𝐸, и 𝛾(𝑝) = 0 в 

противном случае. Тогда равенство 

 

𝑑𝛾(𝑝, 𝑞) = |𝛾(𝑝) − 𝛾(𝑞)| 
 

дает полуметрику 𝑑𝛾 на 𝑉 [12, c. 457]. 

Изменяя функцию 𝛾, мы можем получать различные полуметрики 𝑑𝛾. Значит, 

всегда можно построить семейство полуметрик (𝑑𝑖)𝑖∈𝐼𝐸
, которое будет направленным. 

При этом всегда можно добиться того, что для двух любых точек 𝑝 ≠ 𝑞  найдется 

полуметрика 𝑑𝛾, для которой 𝑑𝛾(𝑝, 𝑞) > 0. Проделав эту процедуру на всех связных 

окрестностях 𝐸 всех точек 𝑥 ∈ 𝑉, мы превратим 𝑉 в полуметрическое пространство с 

отделимой структурой, в котором топология индуцирована семейством полуметрик 

(𝑑𝑖)𝑖∈𝐼. Очевидно, что эта топология совпадает с исходной, введенной на 𝑉 атласом 
(𝛷𝑠, 𝜑𝑠)𝑠∈𝑆. 

Заметим теперь, что использование полуметрик позволяет переписать упомя-

нутое выше утверждение Биркгофа в следующем более простом виде, формально не 

связанном с атласом (𝛷𝑠, 𝜑𝑠)𝑠∈𝑆: для рекуррентности движения 𝑓(𝑡, 𝑝) на 𝑉 

необходимо и достаточно, чтобы для каждого сколь угодно малого положительного 

числа 𝜀 нашлось такое 𝑇𝜀 > 0, что при всех 𝜏 ∈ 𝑅 и 𝜎 ∈ 𝑅 существует такое                  

𝑡 ∈ [𝜎, 𝜎 + 𝑇𝜀], что 

 

𝑑𝑖(𝑓(𝜏, 𝑝), 𝑓(𝑡, 𝑝)) < 𝜀, 𝑖 ∈ 𝐼. 
 

НОВОЕ СВОЙСТВО РЕКУРРЕНТНЫХ ДВИЖЕНИЙ 

Вообще говоря, приведенные выше свойства рекуррентного движения не дают 

достаточно полного представления о его структуре как функции времени. Этот 

недостаток компенсируется новым свойством рекуррентных движений на 𝑉, которое 

устанавливает следующая 

Теорема 1.  Пусть 𝑓(𝑡, 𝑝) – некоторое движение системы 𝑔𝑡, определенной       

на 𝑉, и пусть 𝑇 – некоторое положительное число. Предположим, что для каждого 

𝜀 > 0 существует такое натуральное число 𝑁𝜀, зависящее также от 𝑇, что для всех 

𝑡 ∈ 𝑅  
 

𝑑𝑖(𝑓(𝑡, 𝑝), 𝑓(𝑡 + 𝑁𝜀𝑇, 𝑝)) < 𝜀, 𝑖 ∈ 𝐼.                                        (2) 

 

Тогда 𝑓(𝑡, 𝑝) – рекуррентное движение. 
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Доказательство. Прежде всего заметим, что в силу неравенства (2) найдется 

такая последовательность натуральных чисел (𝑁𝑘)𝑘∈𝑁 ↑ +∞, что 

 

𝑙𝑖𝑚𝑘→+∞ 𝑠𝑢𝑝
𝑡∈ℎ

𝑑𝑖(𝑓(𝑡, 𝑝), 𝑓(𝑡 + 𝑁𝑘𝑇, 𝑝)) = 0, 𝑖 ∈ 𝐼.                                  (3) 

 

Для всех 𝑁 = 0, 1, … обозначим через 𝑃𝑁 множество функций 

 

𝑡 → 𝑓(𝑡 + (𝑁 + 𝑚)𝑇, 𝑝), 𝑚 = 0, 1, …, 
 

определенных на отрезке [0, 𝑇]. Далее обозначим через 𝑃́𝑁 замыкание множества 𝑃𝑁 и, 

принимая во внимание тот факт, что пространство 𝑉 метризуемо, заметим, что любое 

множество 𝑃𝑁 равностепенно непрерывно на [0, 𝑇], т. е. для каждого 𝜂 > 0 существует 

такое 𝛿 > 0, что при всех 𝑚 = 0, 1, … 

 

𝑑𝑖(𝑓(𝑡1 + (𝑁 + 𝑚)𝑇, 𝑝)), 𝑓(𝑡2 + (𝑁 + 𝑚)𝑇, 𝑝)) < 𝜂, 𝑖 ∈ 𝐼,                         (4) 

 

всякий раз, когда |𝑡1 − 𝑡2| < 𝛿 [12, c. 460, 462, 477]. 

В самом деле, для простоты обозначений положим 

 

𝑝𝑚 = 𝑓(𝑚𝑇, 𝑝), 𝑚 = 0, 1, …, 
 

и заметим, что в силу аксиомы (a3) 

 

𝑓(𝑡 + 𝑚𝑇, 𝑝) = 𝑓(𝑡, 𝑓(𝑚𝑇, 𝑝)) = 𝑓(𝑡, 𝑝𝑚). 
 

Поскольку пространство 𝑉 компактно, то функция (𝑡, 𝑥) → 𝑔𝑡𝑥 равномерно 

непрерывна на множестве [0, 𝑇] × 𝑉, т. е. для всех 𝜂 > 0 и 𝑖 ∈ 𝐼 существуют такие 𝛿 > 0 

и 𝑗 ∈ 𝐼, что на [0, 𝑇] × 𝑉 

 

𝑑𝑖(𝑓(𝑡1, 𝑞)), 𝑓(𝑡2, 𝑟)) < 𝜂 

 

всякий раз, когда 𝑑𝑗(𝑞, 𝑟) < 𝛿 и |𝑡1 − 𝑡2| < 𝛿 [12, c. 458]. Поэтому без какой-либо 

потери общности можем считать, что для всех 𝑚 = 0, 1, … 

 

𝑑𝑖(𝑓(𝑡1, 𝑝𝑚), 𝑓(𝑡1, 𝑟)) <
𝜂

3
, 

𝑑𝑖(𝑓(𝑡2, 𝑝𝑚), 𝑓(𝑡2, 𝑟)) <
𝜂

3
 

и 

𝑑𝑖(𝑓(𝑡1, 𝑟), 𝑓(𝑡2, 𝑟)) <
𝜂

3
 

 

при всех 𝑑𝑗(𝑝𝑚, 𝑟) < 𝛿 и |𝑡1 − 𝑡2| < 𝛿. 
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Таким образом, согласно неравенству треугольника для всех  𝑚 = 0, 1, … 

 

𝑑𝑖(𝑓(𝑡1, 𝑝𝑚), 𝑓(𝑡2, 𝑝𝑚)) ≤ 𝑑𝑖(𝑓(𝑡1, 𝑝𝑚), 𝑓(𝑡1, 𝑟)) + 

+𝑑𝑖(𝑓(𝑡2, 𝑝𝑚), 𝑓(𝑡2, 𝑟)) + 𝑑𝑖(𝑓(𝑡1, 𝑟), 𝑓(𝑡2, 𝑟)) < 𝜂 

 

всякий раз, когда 𝑑𝑗(𝑝𝑚, 𝑟) < 𝛿 и |𝑡1 − 𝑡2| < 𝛿, т. е. множество 𝑃0 равностепенно 

непрерывно. 

Заметим теперь, что неравенство (4) выполняется равномерно относительно 𝑁, 

т. е. все множества 𝑃𝑁 равностепенно непрерывны. Значит, согласно третьей теореме 

Асколи все множества 𝑃́𝑁 компактны в топологии равномерной сходимости [12, c. 489]. 

Кроме того, по построению 

 

𝑃0 ⊃ 𝑃1 ⊃ ⋯ ⊃ 𝑃𝑁 ⊃ ⋯, 
 

а в силу равенства (3) каждое множество 𝑃́𝑁 инвариантно. Следовательно, 

 

𝑃́0 = 𝑃́1 = ⋯ = 𝑃́𝑁 = ⋯                                                        (5) 

 

Заметим теперь, что в силу равенства (3) 
 

𝑙𝑖𝑚
𝑘→+∞

𝑠𝑢𝑝
𝑡∈ℎ

𝑑𝑖(𝑓(𝑡, 𝑝), 𝑓(𝑡 − 𝑁𝑘𝑇, 𝑝)) = 0, 𝑖 ∈ 𝐼. 

 

Для всех 𝑁 = 0, 1, … обозначим через 𝑃′𝑁 множество функций 
 

𝑡 → 𝑓(𝑡 − (𝑁 − 𝑚)𝑇, 𝑝), 𝑚 = 0, 1, …, 
 

определенных на отрезке [0, 𝑇]. Пусть 𝑃́′𝑁 – замыкание множества 𝑃′𝑁. Тогда, действуя 

так же, как и выше, несложно показать, что все множества 𝑃́′𝑁 компактны в топологии 

равномерной сходимости, инвариантны и удовлетворяют условию 

 

𝑃́′0 = 𝑃́′1 = ⋯ = 𝑃́′𝑁 = ⋯ = 𝑃́0.                                              (6) 

 

Очевидно, что при любом 𝑝 ∈ 𝑉, для которого выполнены условия теоремы 1,      

каждая точка последовательности функций (𝑓(𝑡 + 𝑚𝑇, 𝑝))
𝑚∈𝑁

 является ее точкой 

сгущения, а множество 𝑃́′0 – наименьшим замкнутым множеством, содержащим             

все эти точки. Поэтому согласно компактности и инвариантности множеств 𝑃́𝑁 , 𝑃́′𝑁        

и равенствам (5), (6) несложно заметить, что замыкание 𝐾́ траектории 𝐾 движе- 

ния 𝑓(𝑡, 𝑝) – компактное минимальное множество. Значит, в силу определения 

Биркгофа 𝑓(𝑡, 𝑝) – рекуррентное движение. 
 

ЗАКЛЮЧЕНИЕ 

Основное практическое значение теоремы 1 состоит в том, что она фактически 

намечает простой путь построения рекуррентных движений на 𝑉, ранее неизвестный. 
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В самом деле, пусть 𝑇 – некоторое положительное число и пусть 𝑓(𝑡, 𝑝) – 

произвольное движение. Предположим, что для каждого 𝜀 > 0 существует такое 

𝑁𝜀 ∈ 𝑁, что 

 

∥ 𝜑𝑠
−1(𝑓(𝑝) − 𝜑𝑠

−1(𝑓(𝑁𝜀𝑇, 𝑝)) ∥< 𝜀 

 

на соответствующей карте (𝛷𝑠, 𝜑𝑠) атласа (𝛷𝑠, 𝜑𝑠)𝑠∈𝑆. Тогда, как видно из 

доказательства теоремы 1, 𝑓(𝑡, 𝑝) – рекуррентное движение, т. е. для построения 𝑓(𝑡, 𝑝) 

нужно подобрать некоторый численный метод и соответствующее ему число 𝑇. 

Остается добавить, что согласно результатам статьи [13] данный подход может 

быть применен к построению асимптотических рекуррентных решений неавтономных 

систем обыкновенных дифференциальных уравнений. 
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В статье приведено определение интеграционного подхода к оценке профес-

сиональных рисков, реализованного в виде Telegram-бота. Подход синтезирует три 

взаимодополняющих метода: детерминированную оценку на основе специальной 

оценки условий труда (СОУТ), вероятностное моделирование по методу Монте-Карло 

и оценку неопределенности по руководству GUM. Проведенная апробация решения 

установила его эффективность, выражающуюся в повышении оперативности оценки и 

росте вовлеченности персонала. Сравнительный анализ выявил, что в 40 % случаев 

точечные оценки СОУТ соответствовали интервальным данным модели, а в 15 % – 

оказались заниженными. Данный подход является прямым развитием традиционных 

методов, преодолевающим их ограничения за счет комплексного учета вероятностной 

природы и неопределенности исходных данных, что позволяет перейти от реактивного 

к превентивному управлению рисками. 

Ключевые слова: профессиональные риски, оценка рисков, Telegram-бот, метод 

Монте-Карло, GUM, СОУТ, цифровизация охраны труда, риск-менеджмент. 

 


